skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hacker, Sally"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coastal ecosystems such as mangroves, salt marshes, and seagrasses sequester large amounts of carbon per unit area due to their high productivity and sediment accumulation rates. However, only a handful of studies have examined carbon sequestration in coastal dunes, which are shaped by biophysical feedback between aeolian sediment transport and burial-tolerant vegetation. The goal of this study was to measure carbon storage and identify the factors that influence its variability along the foredunes of the US Outer Banks barrier islands of North Carolina. Specifically, differences in carbon stocks (above- and belowground biomass and sand), dune grass abundance, and sand supply were measured among islands, cross-shore dune profile locations, and dune grass species. Carbon varied among aboveground grass biomass (0.1 ± 0.1 kg C m−2), belowground grass biomass (1.1 ± 1.6 kg C m−3), and sand (0.9 ± 0.6 kg C m−3), with the largest amount in belowground grass stocks. Aboveground grass carbon stocks were comparable to those in eelgrass beds and salt marshes on a per-area basis, while sediment carbon values in our study system were lower than those in other coastal systems, including other dune locations. Additionally, sand carbon density was positively related to patterns in dune sand supply and grass abundance, reflecting a self-reinforcing vegetation-sediment feedback at both high and low sand accumulation rates. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. Vegetation plays a crucial role in coastal dune building. Species‐specific plant characteristics can modulate sediment transport and dune shape, but this factor is absent in most dune building numerical models. Here, we develop a new approach to implement species‐specific vegetation characteristics into a process‐based aeolian sediment transport model. Using a three‐step approach, we incorporated the morphological differences of three dune grass species dominant in the US Pacific Northwest coast (European beachgrassAmmophila arenaria, American beachgrassA. breviligulata, and American dune grassLeymus mollis) into the model AeoLiS. First, we projected the tiller frontal area of each grass species onto a high resolution grid and then re‐scaled the grid to account for the associated vegetation cover for each species. Next, we calibrated the bed shear stress in the numerical model to replicate the actual sand capture efficiency of each species, as measured in a previously published wind tunnel experiment. Simulations were then performed to model sand bedform development within the grass canopies with the same shoot densities for all species and with more realistic average field densities. The species‐specific model shows a significant improvement over the standard model by (a) accurately simulating the sand capture efficiency from the wind tunnel experiment for the grass species and (b) simulating bedform morphology representative of each species' characteristic bedform morphology using realistic field vegetation density. This novel approach to dune modeling will improve spatial and temporal predictions of dune morphologic development and coastal vulnerability under local vegetation conditions and variations in sand delivery. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Wind flow over coastal foredunes adapts to vegetation, resulting in spatial gradients in bed shear stresses that contribute to the formation of localized bedforms. Under- standing, and having the capability to numerically predict, the distribution of sedi- ment deposited within sparsely vegetated dune complexes is critical for quantifying the ecological, protective, and economic benefits of dune management activities. Data from wind tunnel experiments have indicated that there is a spatial lag from the canopy leading edge to a downwind location where sediment deposition first occurs. The length scale of this deposition lag is further quantified here using new field mea- surements of aeolian sediment transport across sparsely vegetated managed dune systems in Oregon, USA. We develop a deposition lag length scale parameter using both lab and this new field data and then incorporate this parameter into the process-based aeolian sediment transport model, Aeolis, which also includes a new far-field shear stress coupler. Results from numerical simulations suggest that the spatial deposition lag effect is significant for model skill in sparsely vegetated dunes. We observe with field and laboratory observations that, as canopy density increases, the length of the deposition lag decreases. As such, within the model framework the implementation of the deposition lag length does not affect the results of models of coastal dune geomorphological evolution within higher density canopies. Dune can- opy density can vary due to natural (e.g., storm overwash, burial, die-off) or anthro- pogenic (e.g., managed plantings, dune grading) processes. 
    more » « less
  4. The U.S. Pacific Northwest (PWN) coastal dunes are mainly colonized by two non-native beachgrass species (i.e., Ammophila arenaria and A. breviligulata) and a native dune grass (Leymus mollis) that capture sand and build dunes of different morphology. Recently, a hybrid beachgrass was discovered with unknown consequences for dune evolution. We set up a common garden experiment including seven treatments and two control plots to understand the effect of native and non-native plant species on sand accretion and dune morphological evolution. After 1.6 years, sand volume increased the most in the non-native species plots with levels at least twice as high for A. arenaria as compared to the other plots. The hybrid species had moderate sand accretion but a survival rate of 1.4 and 2.1 times higher than its parent species and native species, respectively. These results provide new insights for U.S. PNW coastal dune management. 
    more » « less
  5. Abstract Invasive plants formed via hybridization, especially those that modify the structure and function of their ecosystems, are of particular concern given the potential for hybrid vigor. In the U.S. Pacific Northwest, two invasive, dune‐building beachgrasses,Ammophila arenaria(European beachgrass) andA. breviligulata(American beachgrass), have hybridized and formed a new beachgrass taxa (Ammophila arenaria × A. breviligulata), but little is known about its distribution, spread, and ecological consequences. Here, we report on surveys of the hybrid beachgrass conducted across a 250‐km range from Moclips, Washington to Pacific City, Oregon, in 2021 and 2022. We detected nearly 300 hybrid individuals, or an average of 8–14 hybrid individuals per km of surveyed foredune. The hybrid was more common at sites within southern Washington and northern Oregon whereA. breviligulatais abundant (75%–90% cover) andA. arenariais sparse and patchy. The hybrid displayed morphological traits such as shoot density and height that typically exceeded its parent species suggesting hybrid vigor. We measured an average growth rate of 30% over one year, with individuals growing faster at the leading edge of the foredune, nearest to the beach. We also found a positive relationship between hybrid abundance andA. arenariaabundance, suggesting thatA. arenariadensity may be a controlling factor for hybridization rate. The hybrid showed similar sand deposition and associated plant species richness patterns compared with its parent species, although longer term studies are needed. Finally, we found hybrid individuals within and near conservation habitat of two Endangered Species Act‐listed, threatened bird species, the western snowy plover (Charadrius alexandrinus nivosus) and the streaked horned lark (Eremophila alpestris strigata), a concern for conservation management. Documenting this emerging hybrid beachgrass provides insights into how hybridization affects the spread of novel species and the consequences for communities in which they invade. 
    more » « less
  6. Previous work on the US Atlantic coast has generally shown that coastal foredunes are dominated by two dune grass species,Ammophila breviligulata(American beachgrass) andUniola paniculata(sea oats). From Virginia northward,A. breviligulatadominates, whileU. paniculatais the dominant grass south of Virginia. Previous work suggests that these grasses influence the shape of coastal foredunes in species-specific ways, and that they respond differently to environmental stressors; thus, it is important to know which species dominates a given dune system. The range boundaries of these two species remains unclear given the lack of comprehensive surveys. In an attempt to determine these boundaries, we conducted a literature survey of 98 studies that either stated the range limits and/or included field-based studies/observations of the two grass species. We then produced an interactive map that summarizes the locations of the surveyed papers and books. The literature review suggests that the current southern range limit forA. breviligulatais Cape Fear, NC, and the northern range limit forU. paniculatais Assateague Island, on the Maryland and Virginia border. Our data suggest a northward expansion ofU. paniculata,possibly associated with warming trends observed near the northern range limit in Painter, VA. In contrast, the data regarding a range shift forA. breviligulataremain inconclusive. We also compare our literature-based map with geolocated records from the Global Biodiversity Information Facility and iNaturalist research grade crowd-sourced observations. We intend for our literature-based map to aid coastal researchers who are interested in the dynamics of these two species and the potential for their ranges to shift as a result of climate change. 
    more » « less